“Everything Out” Validation Approach for Qsar Models of Chemical Mixtures
نویسندگان
چکیده
Established strategies for validating QSAR models of binary mixtures of chemicals are not applicable to the most challenging case, which is the prediction of binary mixtures created by two compounds not present in the initial training set. In this study, we have addressed this challenge by introducing the “Everything Out” validation strategy where the external sets are deliberately formed by all binary combinations of two compounds excluded from the training set. The model accuracy is evaluated by the error of prediction for the external sets. We show that the “Everything Out” approach affords lower error of prediction for binary mixtures formed by two new compounds and similar error of prediction for mixtures with one new compound as compared to the alternative “Compound Out” validation approach. We posit that “Everything Out” should be employed as the preferred approach to validating QSAR models of binary mixtures.
منابع مشابه
A Novel QSAR Model for the Evaluation and Prediction of (E)-N’-Benzylideneisonicotinohydrazide Derivatives as the Potent Anti-mycobacterium Tuberculosis Antibodies Using Genetic Function Approach
Abstract A dataset of (E)-N’-benzylideneisonicotinohydrazide derivatives as a potent anti-mycobacterium tuberculosis has been investigated utilizing Quantitative Structure-Activity Relationship (QSAR) techniques. Genetic Function Algorithm (GFA) and Multiple Linear Regression Analysis (MLRA) were used to select the descriptors and to generate the correlation QSAR models that relate the Mi...
متن کاملIn-silico prediction of Cellular Responses to Polymeric Biomaterials from Their Molecular Descriptors
In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regressions (MLR) and artificial neural network (ANN) methods. The root m...
متن کاملQSAR models to predict physico-chemical Properties of some barbiturate derivatives using molecular descriptors and genetic algorithm- multiple linear regressions
In this study the relationship between choosing appropriate descriptors by genetic algorithm to the Polarizability (POL), Molar Refractivity (MR) and Octanol/water Partition Coefficient (LogP) of barbiturates is studied. The chemical structures of the molecules were optimized using ab initio 6-31G basis set method and Polak-Ribiere algorithm with conjugated gradient within HyperChem 8.0 environ...
متن کاملQuantitative Structure Activity Relationship Analysis of Coumarins as Free Radical Scavengers by Genetic Function Algorithm
The antioxidant properties of coumarin derivatives using the 2,2ˈ -diphenyl-1- picrylhydrazyl (DPPH) radical scavenging assay were investigated by the application of Quantitative Structure Activity Relationship (QSAR) studies. The molecular structures were optimized and submitted for the generation of quantum chemical and molecular descriptors. Genetic Function Algorithm (GFA) was employed in m...
متن کاملLQTA-QSAR: A New 4D-QSAR Methodology
A novel 4D-QSAR approach which makes use of the molecular dynamics (MD) trajectories and topology information retrieved from the GROMACS package is presented in this study. This new methodology, named LQTA-QSAR (LQTA, Laboratório de Quimiometria Teórica e Aplicada), has a module (LQTAgrid) that calculates intermolecular interaction energies at each grid point considering probes and all aligned ...
متن کامل